Updating The Chilling Stars and Magic Universe
When cosmic rays freeze the world, you’d better evolve
Transforming the story of life on the Earth is a report in Nature today about multicellular creatures more than 2 billion years old, at a time when single-celled bacteria supposedly reigned supreme. Fossils you can pick up with your fingers, found in Gabon, West Africa, are far, far older than the multicellular animals that become detectable about 600 million years ago (Ediacaran period) and conspicuous 542 million years in the “Cambrian explosion”. The age is fixed with remarkable precision at 2070 to 2130 million years.
A team of 21 experts from France, Sweden, Denmark, Canada, Germany and Belgium make the report. The lead author is Abderrazak El Albani, at the University of Poitiers, France. He tells Agence France Press that “More than 250 specimens have been found so far. They have different body shapes, and vary in size from one to 12 centimetres.”
What excites me about the discovery is that here was a far-reaching evolutionary response to the rise of oxygen in the Earth’s atmosphere beginning more than 2000 million years ago. It occurred in the aftermath of a planet-wide freeze for which there is a cosmic explanation.
Chapter 6 in The Chilling Stars includes the story of “Snowball Earth” events. Here are some extracts.
In 1986, George Williams and Brian Embleton in Australia used the magnetism in grains of iron oxide dropped from ancient ice to show that they were released within a few degrees of the Equator. A few years later, Joseph Kirschvink of the California Institute of Technology confirmed this result in magnetism associated with other rock formations in Australia produced by ice action, and well dated as 700 million years old. He called it ‘bullet-proof evidence’.
“It now seems clear that these extensive, sea-level deposits … were formed by widespread continental glaciers which were within a few degrees of the equator. The data are difficult to interpret in any fashion other than that of a widespread, equatorial glaciation.”
Kirschvink invented the name Snowball Earth for that dire climatic state. You have to visualise ice sheets, glaciers and frozen seas even at the Equator itself. The degree of ocean freezing is still debated. Some investigators imagine vistas of ice a kilometre thick or more, others prefer a ‘slushball’picture with drifting sea ice and icebergs. Either way the impact on life was severe.
Evidence from all the world’s continents unpacks into about three separate snowball episodes in the interval 750 to 580 million years ago. Worms that survived by scavenging the sea-bed detritus evolved the body-plans that made possible the explosion of animal life mentioned in the previous chapter, when the world became reliably warmer again in the Cambrian Period that started 542 million years ago.
Those cold Neo-Proterozoic times, as geologists call them, were not the only occasion of such radical events involving ice and evolution. By the end of the 20th century, geologists had amassed evidence from South Africa, Canada and Finland that confirmed two Snowball Earth episodes between 2,400 and 2,200 million years ago, in Palaeo-Proterozoic times. Our planet was then only half its present age.
2.75 million years ago
16/05/2010Climate Change – News and Comments and Updating The Chilling Stars
Why the big freeze 2.75 million years ago?
For Henrik Svensmark and me, an explanation for that big freeze of 2.75 million years ago is the “jewel in the crown” of climate history, because of its importance for the subsequent origin of the first human beings.Here’s a picture from The Chilling Stars of one of the earliest known stone tools, which were made less than 200,000 years after the big freeze began.
(A) Oxygen-18 index of deep-ocean temperature and ice volume (after Miller & Fairbanks1987 and Zachos et al. 2001). (B) Estimates of past CO2 concentrations from alkenones (after Pagani et al. 2005). Source: W.F. Ruddiman, Science, 14 May 2010, p.839.
Ruddiman thinks that the data must be wrong. He suggests pushing the CO2 up a little, 20 to 10 million years ago (using boron/calcium ratios) and finding a decline between 5 and 2 million years ago in new alkenone data. He concludes, “Geochemists still have work to do in refining the CO2 proxies.”
But that would be wasted effort if CO2 were not the driver. In The Chilling Stars Henrik Svensmark and I tell a completely different story about what was happening 2.75 million years ago. In Postscript 2008 we relate how the Sun and Earth, wandering through the Galaxy, blundered into a region of space packed with extra cosmic rays – just what was required to chill the world by making more low clouds, in accordance with the Svensmark hypothesis.
Read the rest of this entry »