Dying comets probe the Sun


Updating Magic Universe

Debris traces the solar magnetic field

What started as a bonanza for comet spotters becomes a new tool for exploring levels in the Sun’s atmosphere that have been hard to see up to now. The SOHO spacecraft (Solar and Heliospheric Observatory) has identified more than 1400 small “sungrazing” comets that fly close to the Sun and evaporate. In July last year, the comet observers using SOHO’s Large Angle and Spectrometric Coronagraph (LASCO) team alerted colleagues operating the newer SDO (Solar Dynamics Observatory) to a larger-than-usual sungrazer heading for its doom.

As he reports in the current issue of Science magazine, Karel Schrijver from the Lockheed Martin Advanced Technology Center in California tracked Comet 2011 N3 SOHO by extreme ultraviolet light with his Atmospheric Imaging Assembly on SDO, which observes highly ionized atoms. What he learned about the comet and about the Sun I’ll tell below as a concise update for Magic Universe. Meanwhile the word is that SDO also observed Comet Lovejoy last month, when it survived a close encounter with the Sun, passing behind it and reappearing on the other side.

Here are a few relevant paragraphs from my story about Comets and Asteroids in Magic Universe.

The big comet count came from another instrument on SOHO, called LASCO, developed under US leadership. Masking the direct rays of the Sun, it kept a constant watch on a huge volume of space around it, looking out primarily for solar eruptions. But it also saw comets when they crossed the Earth-Sun line, or flew very close to the Sun.

A charming feature of the SOHO comet watch was that amateur astronomers all around the world could discover new comets, not by shivering all night in their gardens but by checking the latest images from LASCO. These were freely available on the Internet. And there were hundreds to be found, most of them small ‘sungrazing’ comets, all coming from the same direction. They perished in encounters with the solar atmosphere, but they were related to larger objects on similar orbits that did survive, including the Great September Comet (1882) and Comet Ikeya-Seki (1965).

SOHO is seeing fragments from the gradual break-up of a great comet, perhaps the one that the Greek astronomer Ephorus saw in 372 BC,’ explained Brian Marsden of the Center for Astrophysics in Cambridge, Massachusetts. ‘Ephorus reported that the comet split in two. This fits with my calculation that two comets on similar orbits revisited the Sun around AD 1100. They split again and again, producing the sungrazer family, all still coming from the same direction.’

The progenitor of the sungrazers must have been enormous, perhaps 100 kilometres in diameter or a thousand times more massive than Halley’s Comet. Not an object you’d want the Earth to tangle with. Yet its most numerous offspring, the SOHO-LASCO comets, are estimated to be typically only about 10 metres in diameter.

Update January 2012

In July 2011 a larger than usual sungrazer spotted by SOHO was tracked across the face of the Sun by a newer spacecraft, the Solar Dynamics Observatory, SDO. Named as Comet 2011 N3 SOHO, it evaporated to the point of invisibility after 20 minutes, but not before the event had transformed the game from comet-spotting fun to highly productive cometary and solar physics.

Led by Karel Schrijver from the Lockheed Martin Advanced Technology Center in California, the SDO team was able to gauge the size of the comet. Initially it was up to 50 metres wide. This opened the way to investigating the sungrazers in much more detail. It should become possible to learn more about the composition of these comets, according to how they boil and rupture in the intense heat.

As for solar physics, the miniature tail of the dying comet lit up magnetic field lines at altitudes high in the solar atmosphere that otherwise are almost impossible to detect. Seeing the lines traced by sungrazers at different heights above the Sun will make it possible to trace more accurately the links between the magnetism near the visible surface and the vast field that reaches out into space and influences the Earth.


Karel Schrijver et al., Science 20 January 2012, vol. 335, pp. 324-328 DOI: 10.1126/science.1211688

NB: Movies are available at http://www.sciencemag.org/content/335/6066/324/suppl/

Target comet spotted


Updating Comets

Rosetta spies Comet Churyumov-Gerasimenko

The European Space Agency’s Rosetta spacecraft, launched in 2004, has just gone into hibernation until 2014, as it continues to cruise towards its far-flung rendezvous with a comet. Once there it will drop a lander on the nucleus and then accompany the comet as it orbits towards the Sun. Before Rosetta went to sleep, its camera OSIRIS was able to pick out its target, Comet Churyumov-Gerasimenko,160 million kilometres away among the background stars. This is the picture released today from the Max Planck Institute for Solar System Research (MPS).

Caption: Seen in the second enlargement from the crowded starfield of the Scorpius constellation, the comet became visible as a single point of light to the 10-cm OSIRIS telescope on Rosetta, thanks to exposures totalling 13 hours. Credits: ESA 2011 MPS for OSIRIS-Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA.

We had not expected to be able to create first images from so far away,” says the lead investigator for OSIRIS, Holger Sierks of MPS.

The press release from MPS is here http://www.mps.mpg.de/en/aktuelles/pressenotizen/pressenotiz_20110608.html

And from ESA here http://www.esa.int/esaSC/SEM38RJ4LOG_index_0.html

By the way, next week (15 June) I’ll be taking part in an ESA TV programme about Rosetta and its predecessor Giotto, at ESOC, ESA’s mission control in Darmstadt.

Added 12 June: The event will start in the afternoon at 16:30 CEST. (15:30 BST) and will be webstreamed live at www.esa.int




Kennelful of Pluto puppies


Pick of the Pics and Updating Magic Universe

A kennelful of Pluto puppies

Three successive images from the Hubble Space Telescope show two remote objects in the Solar System inching across the sky in front of a distant galaxy (bottom left of each image). The near-vertical streaks are due to the objects moving while Hubble was watching. They are small “trans-Neptunian” objects – comets or asteroids – orbiting the Sun at about 43 times farther out than the Earth. They appear to be companions, at about half the separation of the Earth and Moon. Credits: a negative version of part of Fig. 3 in Fuentes et al., Astrophysical Journal (see references); imagery from HST/ACS/WFC

Soon to be published is the discovery of 14 new members of the Solar System in the so-called Kuiper Belt beyond the most distant “real” planet, Neptune. They are 40-100 km leftover scraps from the building of the Sun’s family of planets. To find them, a team from the Harvard-Smithsonian Center for Astrophysics and Northern Arizona University, led by Carlos Fuentes, trawled through existing images from the Hubble Space Telescope.

As Halley’s Comet and 15 other regular visitors came from the trans-Neptunian Kuiper Belt, I suppose I should be updating my Comets book, but although it mentions “Halley-class” comets orbiting not far beyond Neptune, it doesn’t name the Kuiper Belt. That important feature figures in Magic Universe, which was written two decades later and is more receptive to updating on this point. Here’s the most relevant section in the story called “Comets and asteroids: snowy dirtballs and their rocky cousins”.

Read the rest of this entry »

Comets from sister stars


Upating Comets

Did our comets come from sister stars?

How did the Solar System acquire its never-ending supply of comets to keep startling us? An explanation comes in today’s Science magazine, from Harold Levison and David Kaufmann of the Southwest Research Institute in Boulder, Colorado, working with Canadian and French colleagues.

The presumed source of supply is a very distant cloud of 100 billion or more comets, loosely bound to the Sun, called the Oort Cloud. The new report suggests that, in the tight cluster of stars in which the Sun was born, comets were scattered hither and yon in close encounters between stars, and many of our comets were captured from the Sun’s sisters.

In this extract from Comets I am at pains to stress that Jan Oort wasn’t the inventor of the distant comet cloud.

Ernst Öpik is an Estonian astronomer and musician who has recently been running the Armagh Observatory in Northern Ireland. For most of his long life he has adopted the role of cosmic garbage-sorter, concerning himself with the stray material of the Solar System. In 1932 he calculated that an invisible cloud of comets and meteors, surrounding the Sun at enormous distances, could survive throughout the long lifetime of the Solar System. In 1950 the doyen of Dutch astronomers, Jan Oort of Leiden, who is better known for classic work on the nature of galaxies, reworked Öpik’s idea. He emphasised a different aspect of it, namely that passing stars would cause a few of the objects to fall out of the cloud and into the heart of the Solar System, to become observable as ‘new’ comets.

Thus was the fabulous Öpik-Oort Cloud conceived, as the source of the comets. I abridge the name to the Öoo Cloud and defend this coinage on grounds of sight and sound. It looks like an untidy collection of roughly round objects of various sizes, and it is pronounced ‘Er, oh!’ – just what a neophyte comet lover is liable to utter when he is first told that there are many billions of the things out there.

Read the rest of this entry »

Comets and life 4


Updating Comets and Magic Universe

Did comets spark life on Earth?

Part 4: Life footloose in space

In Part 1 of this series, I mentioned that in Comets, written 30 years ago, I made fun of propositions from the astrophysicists Fred Hoyle and Chandra Wickramasinghe about viable entities living in comets and being delivered ready-made to the Earth, scattered from the comets’ tails. What follows fulfils a promise to look at Chandra’s present ideas — I hope with an open mind.

To back-track a little, there’s a 100-year history of eminent scientists, driven by despair about explaining the very improbable chemistry of life by home cooking on the Earth, suggesting that life came from elsewhere. Of course, their scenarios didn’t explain the origin of life, they merely transferred it somewhere else. Out of sight, out of mind, perhaps.

  • 1907 Svante Arrhenius (yes, the CO2 warming pioneer) suggested that bacterial spores escaped from an alien planet, were driven through interstellar space by the pressure of sunlight, and revived when they reached the Earth.
  • 1971 Francis Crick (yes, of DNA fame) with Leslie Orgel proposed that intelligent beings in another part of the Galaxy spotted the Earth as a suitably wet planet and sent bacteria in a spaceship to seed it.
  • 1979 Fred Hoyle (yes, celebrated for the origin of the elements) with Chandra Wickramasinghe said that life on Earth began in comets, and diseases still come from them.

It was hard not to chuckle over their book Diseases from Space, because Hoyle and Wickramasinghe’s account filled the sky with germs, in a distant echo of the old superstition that comets portended plagues.

John Gadbury (1665) linked comets and catastrophes -- "Famine, Plague & Warrs" In actuality, bubonic plague afflicted London following the depicted 1664-5 comet. Obtained from the Royal Astronomical Society, this is an illustration in N. Calder, Comets: Speculation and Discovery.

Read the rest of this entry »

Comets and life 3


Updating Comets and Magic Universe

Did comets spark life on Earth?

Part 3 Initiating biochemical action

Pascale Ehrenfreund rides again (as in Part 2) in the story in Magic Universe called “Life’s origin: will the answer to the riddle come from outer space?”. But please focus first on Wlodzimierz Lugowsky.

I can trace my ancestry back to a protoplasmal primordial atomic globule,’ boasts Pooh-Bah in The Mikado. When Gilbert and Sullivan wrote their comic opera in 1885 they were au courant with science as well as snobbery. A century later, molecular biologists had traced the genetic mutations, and constructed a single family tree for all the world’s organisms that stretched back 4 billion years ago, to when life on Earth probably began. But they were scarcely wiser than Pooh-Bah about the precise nature of the primordial protoplasm.

In 1995 Wlodzimierz Lugowsky of Poland’s Institute of Philosophy and Sociology wrote about ‘the philosophical foundations of protobiology’. He listed nearly 150 scenarios then on offer for the origin of life and, with a possible single exception to be mentioned later, he judged none of them to be satisfactory. Here is one of the top conundrums for 21st Century science. The origin of life ranks with the question of what initiated the Big Bang, as an embarrassing lacuna in the attempt by scientists to explain our existence in the cosmos.

After discussing possible “home cooking” of life by hypercycles, RNA catalysis or lipid catalysis, and touching on the possibility of false starts, the tale turns back to the sky in pursuit of the only hypothesis acceptable to Lugowsky.

Read the rest of this entry »

Comets and life 2


Updating Comets and Magic Universe

Did comets spark life on Earth?

Part 2: Cosmic carbon compounds

An earlier post, Part 1 under this heading, commented enthusiastically but briefly on a French team’s find of extraterrestrial dust grains rich in carbon in the snow of Antarctica. http://calderup.wordpress.com/2010/05/10/comets-and-life/

I promised more to come, and here it begins. Part 2 deals with cosmic carbon compounds. Later, Part 3 will reconsider the initiation of biochemical action, and Part 4 will look at suggestions of natural life footloose in space.

There were far more comets around when the Solar System was young, in the “heavy bombardment” phase of Earth history lasting until 3.8 billion years ago. Water is abundant in interstellar space and available to build the icy nuclei of comets. Comets may have delivered most of the Earth’s surface water, essential for life.

Carbon compounds are the other main ingredient for life. Comets’ tails consist mainly of small dust grains released from the nuclei, including grains laden with carbon compounds that may have contributed to the origin of life on the Earth. Here’s a general impression of important “prebiotic” molecules made in the vicinity of dying stars and newborn stars and available for incorporation into comets.

PAHs, polyaromatic hydrocarbons observable in interstellar space, could be ancestral to the aromatic compounds that have the very smell of life. Illustration from Pascale Ehrenfreund & Steven Charnley, 2000 – see reference. Graphic art: ©2000 R. Ruiterkamp

Read the rest of this entry »


Get every new post delivered to your Inbox.

Join 149 other followers