Dying comets probe the Sun

22/01/2012

Updating Magic Universe

Debris traces the solar magnetic field

What started as a bonanza for comet spotters becomes a new tool for exploring levels in the Sun’s atmosphere that have been hard to see up to now. The SOHO spacecraft (Solar and Heliospheric Observatory) has identified more than 1400 small “sungrazing” comets that fly close to the Sun and evaporate. In July last year, the comet observers using SOHO’s Large Angle and Spectrometric Coronagraph (LASCO) team alerted colleagues operating the newer SDO (Solar Dynamics Observatory) to a larger-than-usual sungrazer heading for its doom.

As he reports in the current issue of Science magazine, Karel Schrijver from the Lockheed Martin Advanced Technology Center in California tracked Comet 2011 N3 SOHO by extreme ultraviolet light with his Atmospheric Imaging Assembly on SDO, which observes highly ionized atoms. What he learned about the comet and about the Sun I’ll tell below as a concise update for Magic Universe. Meanwhile the word is that SDO also observed Comet Lovejoy last month, when it survived a close encounter with the Sun, passing behind it and reappearing on the other side.

Here are a few relevant paragraphs from my story about Comets and Asteroids in Magic Universe.

The big comet count came from another instrument on SOHO, called LASCO, developed under US leadership. Masking the direct rays of the Sun, it kept a constant watch on a huge volume of space around it, looking out primarily for solar eruptions. But it also saw comets when they crossed the Earth-Sun line, or flew very close to the Sun.

A charming feature of the SOHO comet watch was that amateur astronomers all around the world could discover new comets, not by shivering all night in their gardens but by checking the latest images from LASCO. These were freely available on the Internet. And there were hundreds to be found, most of them small ‘sungrazing’ comets, all coming from the same direction. They perished in encounters with the solar atmosphere, but they were related to larger objects on similar orbits that did survive, including the Great September Comet (1882) and Comet Ikeya-Seki (1965).

SOHO is seeing fragments from the gradual break-up of a great comet, perhaps the one that the Greek astronomer Ephorus saw in 372 BC,’ explained Brian Marsden of the Center for Astrophysics in Cambridge, Massachusetts. ‘Ephorus reported that the comet split in two. This fits with my calculation that two comets on similar orbits revisited the Sun around AD 1100. They split again and again, producing the sungrazer family, all still coming from the same direction.’

The progenitor of the sungrazers must have been enormous, perhaps 100 kilometres in diameter or a thousand times more massive than Halley’s Comet. Not an object you’d want the Earth to tangle with. Yet its most numerous offspring, the SOHO-LASCO comets, are estimated to be typically only about 10 metres in diameter.

Update January 2012

In July 2011 a larger than usual sungrazer spotted by SOHO was tracked across the face of the Sun by a newer spacecraft, the Solar Dynamics Observatory, SDO. Named as Comet 2011 N3 SOHO, it evaporated to the point of invisibility after 20 minutes, but not before the event had transformed the game from comet-spotting fun to highly productive cometary and solar physics.

Led by Karel Schrijver from the Lockheed Martin Advanced Technology Center in California, the SDO team was able to gauge the size of the comet. Initially it was up to 50 metres wide. This opened the way to investigating the sungrazers in much more detail. It should become possible to learn more about the composition of these comets, according to how they boil and rupture in the intense heat.

As for solar physics, the miniature tail of the dying comet lit up magnetic field lines at altitudes high in the solar atmosphere that otherwise are almost impossible to detect. Seeing the lines traced by sungrazers at different heights above the Sun will make it possible to trace more accurately the links between the magnetism near the visible surface and the vast field that reaches out into space and influences the Earth.

References

Karel Schrijver et al., Science 20 January 2012, vol. 335, pp. 324-328 DOI: 10.1126/science.1211688

NB: Movies are available at http://www.sciencemag.org/content/335/6066/324/suppl/


Follow

Get every new post delivered to your Inbox.

Join 146 other followers